Visual Servoing Platform version 3.6.0
Loading...
Searching...
No Matches
servoSimu3D_cMcd_CamVelocity.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See https://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Simulation of a 3D visual servoing.
33 *
34*****************************************************************************/
54#include <stdio.h>
55#include <stdlib.h>
56
57#include <visp3/core/vpHomogeneousMatrix.h>
58#include <visp3/core/vpIoTools.h>
59#include <visp3/core/vpMath.h>
60#include <visp3/io/vpParseArgv.h>
61#include <visp3/robot/vpSimulatorCamera.h>
62#include <visp3/visual_features/vpFeatureThetaU.h>
63#include <visp3/visual_features/vpFeatureTranslation.h>
64#include <visp3/vs/vpServo.h>
65
66// List of allowed command line options
67#define GETOPTARGS "h"
68
69void usage(const char *name, const char *badparam);
70bool getOptions(int argc, const char **argv);
71
80void usage(const char *name, const char *badparam)
81{
82 fprintf(stdout, "\n\
83Simulation of a 3D visual servoing:\n\
84- eye-in-hand control law,\n\
85- velocity computed in the camera frame,\n\
86- without display.\n\
87 \n\
88SYNOPSIS\n\
89 %s [-h]\n",
90 name);
91
92 fprintf(stdout, "\n\
93OPTIONS: Default\n\
94 \n\
95 -h\n\
96 Print the help.\n");
97
98 if (badparam)
99 fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
100}
101
111bool getOptions(int argc, const char **argv)
112{
113 const char *optarg_;
114 int c;
115 while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
116
117 switch (c) {
118 case 'h':
119 usage(argv[0], NULL);
120 return false;
121
122 default:
123 usage(argv[0], optarg_);
124 return false;
125 }
126 }
127
128 if ((c == 1) || (c == -1)) {
129 // standalone param or error
130 usage(argv[0], NULL);
131 std::cerr << "ERROR: " << std::endl;
132 std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
133 return false;
134 }
135
136 return true;
137}
138
139int main(int argc, const char **argv)
140{
141#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
142 try {
143 // Read the command line options
144 if (getOptions(argc, argv) == false) {
145 return EXIT_FAILURE;
146 }
147
148 // Log file creation in /tmp/$USERNAME/log.dat
149 // This file contains by line:
150 // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
151 // - the 6 values of s - s*
152 std::string username;
153 // Get the user login name
154 vpIoTools::getUserName(username);
155
156 // Create a log filename to save velocities...
157 std::string logdirname;
158#if defined(_WIN32)
159 logdirname = "C:/temp/" + username;
160#else
161 logdirname = "/tmp/" + username;
162#endif
163 // Test if the output path exist. If no try to create it
164 if (vpIoTools::checkDirectory(logdirname) == false) {
165 try {
166 // Create the dirname
167 vpIoTools::makeDirectory(logdirname);
168 }
169 catch (...) {
170 std::cerr << std::endl << "ERROR:" << std::endl;
171 std::cerr << " Cannot create " << logdirname << std::endl;
172 return EXIT_FAILURE;
173 }
174 }
175 std::string logfilename;
176 logfilename = logdirname + "/log.dat";
177
178 // Open the log file name
179 std::ofstream flog(logfilename.c_str());
180
181 vpServo task;
182 vpSimulatorCamera robot;
183
184 std::cout << std::endl;
185 std::cout << "-------------------------------------------------------" << std::endl;
186 std::cout << " Test program for vpServo " << std::endl;
187 std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
188 std::cout << " Simulation " << std::endl;
189 std::cout << " task : 3D visual servoing " << std::endl;
190 std::cout << "-------------------------------------------------------" << std::endl;
191 std::cout << std::endl;
192
193 // Sets the initial camera location
194 vpPoseVector c_r_o( // Translation tx,ty,tz
195 0.1, 0.2, 2,
196 // ThetaU rotation
197 vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
198
199 // From the camera pose build the corresponding homogeneous matrix
200 vpHomogeneousMatrix cMo(c_r_o);
201
202 // Set the robot initial position
203 vpHomogeneousMatrix wMc, wMo;
204 robot.getPosition(wMc);
205 wMo = wMc * cMo; // Compute the position of the object in the world frame
206
207 // Sets the desired camera location
208 vpPoseVector cd_r_o( // Translation tx,ty,tz
209 0, 0, 1,
210 // ThetaU rotation
212
213 // From the camera desired pose build the corresponding homogeneous matrix
214 vpHomogeneousMatrix cdMo(cd_r_o);
215
216 // Compute the transformation from the initial camera position to the
217 // desired one
219 cMcd = cMo * cdMo.inverse();
220
221 // Build the 3D translation feature: ctc*
223 t.buildFrom(cMcd);
224
225 // Build the 3D rotation feature: thetaU_cRc*
226 vpFeatureThetaU tu(vpFeatureThetaU::cRcd); // current feature
227 tu.buildFrom(cMcd);
228
229 // Sets the desired rotation (always zero !) since s is the
230 // rotation that the camera has to achieve. Here s* = (0, 0)^T
232 vpFeatureThetaU tud(vpFeatureThetaU::cRcd); // desired feature
233
234 // Define the task
235 // - we want an eye-in-hand control law
236 // - the robot is controlled in the camera frame
238 // - we use here the interaction matrix computed with the current
239 // features
241
242 // Add the current and desired visual features
243 task.addFeature(t, td); // 3D translation
244 task.addFeature(tu, tud); // 3D rotation theta u
245
246 // - set the constant gain to 1.0
247 task.setLambda(1);
248
249 // Display task information
250 task.print();
251
252 unsigned int iter = 0;
253 // Start the visual servoing loop. We stop the servo after 200 iterations
254 while (iter++ < 200) {
255 std::cout << "------------------------------------" << iter << std::endl;
256 vpColVector v;
257
258 // get the robot position
259 robot.getPosition(wMc);
260 // Compute the position of the object frame in the camera frame
261 cMo = wMc.inverse() * wMo;
262
263 // new displacement to achieve
264 cMcd = cMo * cdMo.inverse();
265
266 // Update the current visual features
267 t.buildFrom(cMcd);
268 tu.buildFrom(cMcd);
269
270 // Compute the control law
271 v = task.computeControlLaw();
272
273 // Display task information
274 if (iter == 1)
275 task.print();
276
277 // Send the camera velocity to the controller
279
280 // Retrieve the error
281 std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
282
283 // Save log
284 flog << v.t() << " " << (task.getError()).t() << std::endl;
285 }
286 // Display task information
287 task.print();
288
289 // Kill the task
290
291 // Close the log file
292 flog.close();
293 return EXIT_SUCCESS;
294 }
295 catch (const vpException &e) {
296 std::cout << "Catch a ViSP exception: " << e << std::endl;
297 return EXIT_FAILURE;
298 }
299#else
300 (void)argc;
301 (void)argv;
302 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
303 return EXIT_SUCCESS;
304#endif
305}
Implementation of column vector and the associated operations.
vpRowVector t() const
error that can be emitted by ViSP classes.
Definition vpException.h:59
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Class that defines the translation visual feature .
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static bool checkDirectory(const std::string &dirname)
static std::string getUserName()
static void makeDirectory(const std::string &dirname)
static double rad(double deg)
Definition vpMath.h:116
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Implementation of a pose vector and operations on poses.
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition vpRobot.h:80
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition vpServo.cpp:564
@ EYEINHAND_CAMERA
Definition vpServo.h:151
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition vpServo.cpp:299
void setLambda(double c)
Definition vpServo.h:403
void setServo(const vpServoType &servo_type)
Definition vpServo.cpp:210
vpColVector getError() const
Definition vpServo.h:276
vpColVector computeControlLaw()
Definition vpServo.cpp:930
@ CURRENT
Definition vpServo.h:179
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition vpServo.cpp:487
Class that defines the simplest robot: a free flying camera.